skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Varnau, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Quantitative information on the spatiotemporal distribution of polarised proteins is central for understanding cell‐fate determination, yet collecting sufficient data for statistical analysis is difficult to accomplish with manual measurements.Here we present Polarity Measurement (Pome), a semi‐automated pipeline for the quantification of cell polarity and demonstrate its application to a variety of developmental contexts.Pomeanalysis reveals that, during asymmetric cell divisions in theArabidopsis thalianastomatal lineage, polarity proteins BASL and BRXL2 are more asynchronous and less mutually dependent than previously thought. A similar analysis of the linearly arrayed stomatal lineage ofBrachypodium distachyonrevealed that the MAPKKK BdYDA1 is segregated and polarised following asymmetrical divisions.Our results demonstrate that Pomeis a versatile tool, which by itself or combined with tissue‐level studies and advanced microscopy techniques can help to uncover new mechanisms of cell polarity. 
    more » « less